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A B S T R A C T

Organic electronics is an emerging technology with numerous applications in which the active layer is composed
of an organic semiconductor (OSC) or blends of multiple OSC. One of the key performance parameters for such
devices is the charge carrier mobility which can be evaluated by different measurement techniques. Here, we
review different formalisms for extraction and analysis of hole mobilities from temperature-dependent space-
charge limited conductivity (SCLC) measurements for pristine OSC as well as for binary and ternary blends as
used in e.g. photovoltaic applications. The model is also applicable to n-type materials. Possible sources of
measurement errors, such as the presence of traps and series resistance, are discussed. We show that by a simple
method of selecting a proper experimental data range these errors can be avoided. The Murgatroyd-Gill ana-
lytical model in combination with the Gaussian Disorder Model is used to extract zero-field hole mobilities as
well as estimates of the Gaussian energetic disorder in the HOMO level from experimental data. The resulting
mobilities are in excellent agreement with those found from more elaborate fits to a full drift-diffusion model
that includes a temperature, field and density dependent charge carrier mobility; the same holds for the Gaussian
disorder of pure materials and blends with low fullerene concentration. The zero-field mobilities are also ana-
lyzed according to an Arrhenius model that was previously argued to reveal a universal mobility law; for most
–but not all– material systems in the present work this framework gave an equally good fit to the experimental
data as the other models. An automated fitting freeware, incorporating the different models, is made openly
available for download and minimizes error, user input and SCLC data analysis time; e.g. SCLC current-voltage
curves at several different temperatures can be globally fitted in a few seconds.

1. Introduction

Organic electronics is an emerging field where pristine organic
semiconducting materials (OSC) as well as their blends are optimized
for various applications, such as photovoltaics (OPVs) [1], light-emit-
ting diodes (OLEDS) [2], field-effect transistors (OFETs) [3], and light-
emitting electrochemical cells (LECs) [4]. The performance of these
light-weight, transparent, solution-processed and potentially cost-ef-
fective materials heavily relies on their charge carrier mobility. For
typical OSC around room temperature the mobility is dominated by
disorder and reflects the ability of the charge carriers to hop from
molecular site to molecular site in a density of localized states that is
broadened by energetic and spatial disorder. The charge carrier mobi-
lity μ is a valuable figure of merit to characterize the underlying phy-
sical mechanisms of charge transport as it describes the mean speed of
the charge carriers under the presence of an electric field F, =v μF , and
is a function of the lattice temperature as well as the charge carrier

density and electric field [5,6]. Among the different experimental
methods of extracting charge carrier mobilities are space-charge limited
conductivity (SCLC) [7], time-of-flight (TOF) [8], dark injection [9],
Charge Carrier Extraction by Linearly Increasing Voltage (CELIV)
[10,11], time-resolved Microwave Conductance (TRMC) [12], time-
resolved Terahertz Spectroscopy (TRTS) [13], transient Stark spectro-
scopy [14] and time-resolved electric field-induced second harmonic
generation (TREFISH) measurements [15,16], each one probing dif-
ferent time scales following photo-excitation or charge injection and
having its own limitations and advantages.

Due to its simplicity, one of the most commonly used methods is the
temperature-dependent SCLC experiment that measures near-equili-
brium mobilities in simple diode-type devices [17]. However, there are
different empirical methods to extract charge carrier mobilities from
the experimental current density vs. voltage (J-V) measurements. There
are also different frameworks in which the temperature-dependence of
the extracted mobilities can be interpreted. Analytical methods based
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on an ideal quadratic dependence of the current density on the applied
bias are among the most popular and simple to use [18,19]. However,
the required constant power law slope of 2 is rarely observed in actual
devices, hence this method is prone to give erroneous fitted mobilities,
as will be shown below. The inclusion of a phenomenological field
dependence of the mobility mitigates this problem [7,20]. The resulting
temperature-dependent mobilities can be analyzed according to dif-
ferent theories, depending on whether the extracted mobilities follow
an Arrhenius (1/T) or a non-Arrhenius (1/T2) temperature dependence
[21,22]. In practice it can be hard to distinguish between these two, as
will also be shown below.

Apart from the analytical models, more physical and complex ap-
proaches as drift-diffusion (DD) modeling can be used to simulate the
whole device including contacts and active layer, and can reproduce
steady-state experimental data using either a constant mobility or a
mobility that is dependent on temperature, charge carrier density and
applied field as predicted by one of the several variants of the Gaussian
disorder model (GDM) [22–26]. In DD, the charges are assumed to be in
(quasi) thermal equilibrium with the lattice, allowing the use of (quasi)
Fermi levels. Increasing further in complexity, non-equilibrium models
as kinetic Monte Carlo [22,27] and ‘multiple trapping and release’ [28],
have been shown to reproduce steady-state and transient experiments
[16,29–31]. Advanced ab-initio methods, employing multi-scale mod-
eling of the molecular morphology and electronic structure have been
used to investigate the temperature-dependent mobility of both specific
and generic systems [32–35]. Despite the increasing predictive power
of truly or quasi atomistic models, the heavy computational demands of
models beyond drift-diffusion still make those less suited for direct
analysis of, and fitting to experiments. Hence, there is still a need for a
more phenomenological but fast and reproducible analysis of charge
transport in OSCs.

In the present work we present a didactical review of the extraction
and analysis of charge carrier mobilities from temperature-dependent
SCLC measurements for the aforementioned analytical models as well
as a Drift-Diffusion model with parametrized GDM mobilities
[7,18,19,21,22,36,37]. Hence, we do not directly target new insight but
try to educate and improve data analysis in the field, while also pro-
viding a lookup table for some of the materials that we have studied in
our own lab. To this end, temperature-dependent SCLC experiments of
pristine, binary and ternary hole-only diodes are analyzed to extract
zero-field charge carrier mobilities as well as the Gaussian energetic
disorder or activation energy for the HOMO level. The model can also
be applied to n-type materials. The results of the analytical and nu-
merical models are compared and the charge carrier mobilities and
static Gaussian energetic disorder values extracted with different
models are generally in agreement; the Gaussian disorder starts to de-
viate for blends with increasing fullerene concentration, most likely due
to an increasing importance of long-range hops (to non-neighboring
sites) that are not accounted for in the parametrized mobility func-
tionals based on the GDM. Selection of the proper voltage range for
fitting, accounting for the presence of traps and/or series resistances, is
discussed. All material systems are also analyzed according to a uni-
versal Arrhenius 1/T behavior of zero-field mobilities. An automated
freeware analysis tool with a graphical user interface (GUI) im-
plementing all the different models, requiring minimal user input and
processing time is openly available for download.

This work is in part an extension of that by Blakesley et al. [37] The
authors of Ref. [37] propose different methods to ensure proper mea-
surement and data analysis of unipolar SCLC devices. Discussed are
amongst others the selection of proper contacts for having efficient
charge injection and non-dominant series resistance, consistent device
fabrication and stable electrical measurements, the identification of
traps, dopants and the unipolarity of the devices, as well as the mea-
surement and compensation of built-in fields for non-symmetric de-
vices. In a complementary role, the present work incorporates much of
this in an automated open-source tool, minimizing user input and

enhancing standardization and robustness of the analysis. In addition, it
adds data analysis in terms of the aforementioned different charge
transport models.

1.1. Theoretical background

In this work charge transport is described at the level of drift-dif-
fusion assuming near-equilibrium conditions with a steady-state (time-
independent) mobility functional in which the effects of static diagonal,
i.e. on-site, disorder are incorporated. It is not the purpose of this work
to in-depth review the pros and cons of the (theoretical work under-
lying the) various mobility functionals that exist in literature. Instead,
we give a short factual overview of the most commonly employed
schemes; by incorporating these in the mentioned software tool the user
can make an independent decision on which framework to use. We
should stress that the open-source analysis tool can equally well be used
to just extract mobilities from SCLC data that can be further analyzed in
any external model.

1.2. Parametrized mobility functionals

A commonly employed mobility functional has been developed by
Pasveer et al. on basis of numerical transport simulations accounting for
hopping on a simple cubic lattice with uncorrelated Gaussian disorder.
The authors assumed a localization length =α a /10NN with aNN the
lattice constant (inter-site distance). For historical reasons this model
shall here be referred to as the extended Gaussian disorder model
(eGDM) [23]. In particular the dependence of the zero-field mobility on
the lattice temperature T and the charge carrier concentration p is given
by
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In the above equations σ is the Gaussian energetic disorder, σ̂ is the
reduced disorder, v0 is the attempt-to-hop frequency and p is the charge
carrier concentration. The parametrization constants are set as
c1= 0.87, c2= 0.44 [23,38]. In Ref. [23] c1 =1.8×10−9

≈ − = −a α0.87 exp( 2 / ) 0.87 exp( 20)NN , therefore the choice c1= 0.87
implies that the (nearest neighbor) tunneling probability is assumed to
be included in the anyhow poorly defined attempt-to-hop rate v0. It is,
however, important to keep in mind that mobilities in the eGDM do
implicitly depend on α (through v0) as ∝ −μ a αexp( 2 / )NN , although it
has been claimed otherwise [25]. The field dependence of the mobility
is included via

=μ Τ p E μ Τ p f T E( , , ) ( , ) ( , ) (6)

where

= − + −f T E σ E( , ) exp(0.44( ˆ 2.2)( 1 0.8 1))red
1.5 2 (7)

where the reduced field is given by =E Eqa σ/red NN .
In addition to uncorrelated energetic disorder, the presence of mo-

lecular dipoles may give rise to spatial correlations in the energy
landscape and several authors discussed how these affect especially the
field dependence of the mobility [39–41]. Here, we shall employ the
correlated Gaussian disorder model (cGDM) developed by Bouhassoune
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et al. [24] The authors used the same methodology as in the eGDM
discussed above, but for an energy landscape with Gaussian disorder σ
that results from randomly oriented dipole moments of equal magni-
tude on all lattice sites. In this case, the mobility can be described by the
following phenomenological expression

⎡
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⎤
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= + ⎛
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with = −q σ σ( ˆ ) 2.4/(1 ˆ ) and μlow and μhigh the mobilities in the low- and
high-field regimes, the parametrization of which is given in the ap-
pendix [24].

The methodology followed to derive the above eGDM and cGDM
parametrizations has been heavily criticized for giving an inadequate
description of especially the field dependence of the mobility
[25,26,42]. Instead, Baranovskii and coworkers argued that finite
electric fields give rise to an increased effective temperature Teff of the
charge carrier distribution, as originally proposed by Shklovskii [43]:
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with ≈γ 0.67, kB the Boltzmann constant and the localization length α
acting as characteristic length scale [25,26]. In principle, Eq. (9) can be
combined with ‘any’ model that describes the temperature dependent
mobility of a hopping system, like Eq. (1) above or (19) below, by re-
placing T by Teff . Here, we shall combine it with the generic mobility
expression for hopping on a lattice obtained from ‘fat’ percolation
theory by Cottaar et al. and later by Nenashev et al. [38,44]:
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Here, EF and ∗E are the Fermi energy and the critical energy, re-
spectively. By comparing Eq. (10) to numerically exact simulations,
Cottaar et al. showed that the latter depends weakly on the lattice and
hopping model. For Miller-Abrahams hopping on a simple cubic lattice
they found = −∗E σ0.491 below the center of the band. Under those
conditions, the prefactor B, which is of order unity, was determined as
B=0.47. The tunneling frequency = −ω ν a αexp( 2 / )NN0 0 might, in the
case of Marcus hopping, still depend on the temperature and re-
organization energy [38]. For consistency with the choice c1= 0.87
above, we will replace ω0 by v0 in Eq. (10), i.e. include the tunneling
probability in the attempt-to-hop rate. This has the added advantage
that setting =α 0 gives back the bare field-independent model Eq. (10).

There is no consensus whether the exponent λ in Eq. (10) is uni-
versal or also depends on lattice and hopping model. Since the numbers
found by Cottaar vary little and are close to the universal critical ex-
ponent of the correlation length of the percolation cluster, with mag-
nitude 0.875 ± 0.008 in the 3D case [44], we shall use λ =0.875. We
shall refer to the combination of Eqs. (9) and (10) as the effective
temperature version of the Gaussian disorder model (ET-GDM).

So far, we have addressed models in which transport takes place on
a lattice, i.e. models that do not account for spatial disorder. Moreover,
since aNN is typically assumed to be several times larger than α, only
hops to nearby sites contribute to conductivity in these models, making
them effectively nearest neighbor hopping models. Clearly, most dis-
ordered organic semiconductors do show a significant level of spatial
disorder as well, and it has been argued that this promotes variable
range hopping (VRH) and prevents regular lattice models from giving
an accurate description of the charge transport, especially at low tem-
peratures [25,42]. However, for densely packed systems consisting of
subunits with a narrow size distribution, prescribed by e.g. a molecular
or monomer size, the radial distribution function will show pronounced
peaks at short distances [45,46]. Hence, it is not upfront evident that at
practically relevant (room) temperatures lattice models will un-
avoidably break down. From a more practical perspective,

parametrized mobility expressions for VRH including structural dis-
order currently do not seem to exist. For these reasons we will limit
ourselves to the mobility functions introduced above.

1.3. One-dimensional drift-diffusion model

Drift diffusion models rely typically on the simultaneous solution of
the charge transport, continuity and Poisson equations, while contacts
are accounted for as boundary conditions. The Poisson equation in one
dimension is given by:

∇ = −V x
ρ x
ε ε

( )
( )

r

2

0 (11)

where V is the electrostatic potential, ρ the total charge density, ε0 the
vacuum permittivity, εr the material's relative dielectric constant and x
is the spatial coordinate along the direction of current flow. The drift-
diffusion equations for holes and electrons are:
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where p (n) is the hole (electron) density, Dp(n) is the hole (electron)
diffusion constant, μp(n) is the hole (electron) mobility and q is the
elementary charge. The diffusion constant is assumed to be related to
the mobility via the classical Einstein relation

=D
μ

k T
q
B

(13)

where T is the absolute temperature and μ is calculated according to
equation (2). While in principle the generalized Einstein equation
should be used in disordered media [47], it has also been argued that
the classical Einstein relation in disordered organic semiconductors is
valid in absence of non-equilibrium effects due to e.g. deep charge traps
[48]. Since we are mainly interested in the drift-dominated SCLC re-
gime, Eq. (13) is applicable in this case.

Combining the one-dimensional drift equation, i.e. the first term in
Eq. (12) with the Poisson equation under the assumption of steady-state
(constant current throughout the device), one can derive the simple
Mott-Gurney quadratic equation [18,49]:

=
−

J ε ε μ
V V

L
9
8
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app bi
0

2
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where L is the device thickness, Vapp the applied field and Vbi the built-in
voltage.

For a general situation there is no analytical solution and one has to
rely on numerical schemes to solve Eqs. (11–14). In the code used in
this work, these equations are solved using the well-known Scharfetter-
Gummel interpolation scheme for the free charge carrier densities and
current densities; see SI for further details [50].

Injection barriers ϕ are defined as the difference between the
workfunction of the contact and the band edge (in this case the HOMO).
Strictly spoken, an Ohmic contact is barrier-free. However, for the used
parameters, an injection barrier between 0 eV and ∼0.2 eV was found
to result in a non-limiting, i.e. practically Ohmic contact. For finite-
barrier contacts the image potential is included via its effect on the
injection barriers as:

′ = −ϕ ϕ
qF
πε ε4

int

r0 (15)

provided the interfacial field Fint leads to a lowering of the injection
barrier; otherwise the unperturbed barrier ϕ is used. The (effective)
injection barrier ′ϕ sets a boundary condition for the charge carrier
density as:

⎜ ⎟= ⎛
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−
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where p0 is the total site density. The effective injection barrier was not
allowed to become less than zero as this would imply unphysical charge
densities exceeding p0.

Although including the effects of (energetically) discrete or dis-
tributed traps in the DD framework is relatively straightforward, it
often leads to an underdetermined parameter set when fitting to actual
experiments. Hence, when one is interested in the ‘intrinsic’ mobility
parameters, it is better to avoid the parts of the J-V curve that are trap-
dominated as will be discussed in more detail below. In this work a
trap-free analysis will therefore be employed for all the material sys-
tems under study. With traps, in this context, we refer to any additional
distribution of localized states that sit in the bandgap and that is not
included in the e.g. Gaussian density of ‘free’ states, even if these free
states are localized too.

More details on the equations and implementation of the drift-dif-
fusion model are found in the SI (chapter 1). Apart from the material
parameters, the drift-diffusion model includes device parameters as the
distance between the contacts (active layer thickness) and the energy
barriers for contacts 1 and 2. In the analysis, experimentally measured
thicknesses are set as constants while the contact barriers are free fitting
parameters, allowed to vary between 0 eV and 0.2 eV, which is the
range for an Ohmic contact.

1.4. Analytical models

The applicability of the Mott-Gurney law Eq. (14) relies on the strict
quadratic dependence of the current density on the applied bias, which
is easily detected as the region where the J-V curve has a slope of 2 on a
double log-scale. This is rarely found in actual material systems. In
particular, larger slopes can originate from energetic disorder or traps
[51,52]. In order to describe this phenomenon an extended version of
Eq. (14) which includes a field enhancement factor gamma (γ) was
introduced by Murgatroyd and Gill (MG) [7,20]:

⎜ ⎟= − ⎛
⎝

− ⎞
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J ε ε μ V V
L

γ V V
L

9
8

( ) exp 0.891r
bi bi

0 0

2
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where μ0 and γ (that must be larger than or equal to 0) are the (tem-
perature-dependent) zero-field mobilities and field enhancement fac-
tors, respectively. As in this treatment any density dependence of the
mobility gets lumped into the γ parameter, μ0 should be considered the
mobility at both zero-field and zero density and as such can be com-
pared to the corresponding parameter in GDM models. While originally
derived for Coulomb traps that give rise to a detrapping rate that is
proportional to Fexp( ), c. f. last term in Eq. (17), it is commonly used
as a generic empirical expression. In particular, it has been observed by
Gill that γ is typically linearly dependent on 1/T according to [20]:

= ⎡
⎣⎢

− ⎤
⎦⎥

γ T B
kT kT

( ) 1 1
0 (18)

where B and T0 are constant positive coefficients. This is, with rea-
sonable accuracy, also the case for all materials studied in this work, as
shown in Figures S1, S2 in the SI. It should be noted that in the above
simple analytical model the mobility is only a function of the applied
field and does not explicitly depend on the lattice temperature or the
charge concentration. The T-dependence is only empirically accounted
for by T-dependent μ0 and γ , c. f. Eq. (18), and minor systematic de-
viations are commonly observed.

While ≥γ 0 must hold in the original Murgatroyd model, the tor-
tuous morphology of (partially) phase separated bulk heterojunctions
may give rise to a mobility that actually decreases with field [53,54].
The physical reason for this is that protrusions of one phase into the
other can act as dead ends for charges being driven into them by an
electric field. In Eq. (17) this can be mimicked by allowing γ to be
negative. Unfortunately, this behavior closely resembles the effects of a
series resistance as will be discussed below. In both cases, conventional

mobility models cannot be used to interpret the data.
Intrinsic material properties as the static energetic disorder can be

estimated from the interpretation of the extracted temperature-depen-
dent mobilities. According to the Gaussian disorder model (GDM)
[7,22], the zero-field mobility is described by a 1/T2 law:

⎜ ⎟= ⎛
⎝
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where μ* is the mobility at infinite temperature and σ is the static
Gaussian energetic disorder. In the GDM, the value of the parameter is

= ≈c (2/3) 0.442
2 [22]. The ‘bare’ GDM is valid in the Boltzmann limit

only (low carrier density). Even though charge densities under SCLC
conditions are typically low except in thin regions near the Ohmic
contacts, a consistent description of SCLC transport requires accounting
for the density and field dependence of the mobility also [55–57]. In
particular, this is done in the various ‘extended’ variants of the Gaussian
disorder model (eGDM, cGDM, ET-GDM) leading to the parametrized
mobility functionals Eqs. (1), (8) and (10) introduced above.

An alternative approach to the GDM models discussed above is
based on an Arrhenius-type analysis of the zero-field mobility depen-
dence on temperature according to [21]:

= ⎛
⎝

− ⎞
⎠

∗μ Τ μ Δ
kT

( ) exp0 (20)

where Δ is the activation energy. This treatment does not make any
upfront assumptions about the shape of the density of states. Craciun
et al. have argued that, when analyzed using Eq. (20), the SCLC J-V
curves of a wide range of devices show a zero-field mobility that follows
Eq. (20) with a universal mobility ∗μ of 30–40 cm2/Vs [21]. On the one
hand, the 1/T-temperature dependence has been argued to result from
neglecting the carrier-concentration dependence of the mobility [57].
On the other hand, recent calculations for intra-chain hopping based on
a generic model Hamiltonian yielded support for a 1/T-temperature
dependence in the low-density regime [32]. In particular, it was argued
that the low-field, low-density mobility depends only on two para-
meters, an effective structural disorder and an effective electron-
phonon coupling that together determine the constants in Eq. (20).
Here, we will inspect both the 1/T- and 1/T2-temperature dependences
by applying them to a large dataset.

The aforementioned analytical models (MG + GDM,
MG+ Arrhenius) as well as the drift-diffusion model with parametrized
mobilities (DD + eGDM, cGDM and ET-GDM) are implemented in a
freeware automated analysis tool (see SI for numerical details) [58].
The DD + GDM models are expected to be more descriptive and more
accurate as they explicitly solve the drift-diffusion equations and ac-
count for density and field dependencies of the mobility in a non-em-
pirical manner, and thus serves as a proxy for the reliability of the
MG + GDM model.

2. Experimental

Hole transport in pure, binary and ternary organic semiconductor
blends as used in e.g. organic photovoltaics is investigated in the pre-
sent work. More concretely, experimental temperature-dependent
space-charge limited currents vs. voltage were measured for hole-only
pristine TQ1, PCDTBT devices, binary blends of rr-P3HT:PC61BM
(1:1 weight ratio), PTB7:PC71BM (1:1.5), TQ1:PC71BM (1:2.5), APFO-
Green9:PC71BM (1:3), APFO3:PC61BM (1:4) and MDMO:PPV:PC61BM
(1:4) as well as a series of ternary TQ1:PC71BM1-x:IC60BAx, (0≤ x≤ 1)
devices. Full names of all the compounds as well as fabrication details
are given in the SI. Temperature-dependent SCLC J−Vs were measured
in the dark in a Janis probe station under high vacuum (∼10−5 mbar).
The active layer thickness was determined using a Veeco Dektak 6M
Stylus Profilometer. The experimental data are reproduced using an
automated least-squares fitting program with a graphical user interface
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(GUI) that is made openly available for download and use [58]. This
analysis tool requires minimum user input as the fitting range can be
automatically detected by the software and the model fitting para-
meters like mobility and energetic disorder are automatically calcu-
lated.

2.1. SCLC device fabrication

Hole-only devices were fabricated according to the following pro-
cess: a 40 nm thin film of poly-(3,4-ethylenedioxythiophene) poly-
styrene sulfonate (PEDOT:PSS) was spin-coated on pre-cleaned ITO/
glass substrates in air, followed by 5min bake on a hotplate at 120 °C.
After baking, the active layer (pristine polymer and binary/ternary
polymer-fullerene blends) was spin-coated in a glovebox. A 10/90 nm
MoO3/Al top contact was evaporated on the active layer under high
(∼10−5 mbar) vacuum. The device areas were measured to be in the
range 0.022–0.024 cm2 using an optical microscope. The thicknesses of
the active layers were measured to be in the range of 80–160 nm
(Tables S3, S6 in the SI).

3. Results & discussion

3.1. Identifying traps and series resistance

Robust analysis of space-charge limited transport requires the initial
identification of traps and/or series resistance in the device as they
must have a negligible influence to justify application of the models
introduced above [37]. The presence of traps is detected by in-
vestigating the slope of the log(J)-log(V) experimental data by taking
the logarithmic derivative d J d V( log ( ))/ ( log ( )) [51]. In general, the
presence of shallow trap levels makes that only a fraction of the injected
charge carriers contribute to the device current. When the trap level
becomes filled a transition to a higher, trap-free SCLC current occurs.
The strong dependence of the current density on the voltage in this
‘trap-filling’ regime will result in a distinct peak in the slope, i.e. in
d J d V( log ( ))/ ( log ( )) [51]. An example of such a peak is shown in
Fig. 1a for pristine TQ1 [59] which identifies the voltage region where
the trap states are being filled by the injected charge carriers. In order
to ensure that the ‘intrinsic’ charge transport properties of the in-
vestigated material are actually probed, the fitting range has to be

shifted to voltages where all the traps have been filled (trap-free re-
gions, see Fig. 1a).

It is equally important to identify any series resistance in the device
which occurs typically for thinner active layers and/or at high current
densities and high temperatures where the active layer resistance is
small. This can also be done by investigating the power law slope of the
J-V data, where the existence of a decreasing slope at higher voltages
could be an indication that the current density is being limited by series
resistance, e.g. as for TQ1:IC60BA 1:1 at 300 K shown in Fig. 1b. An
alternative explanation for the decreasing slope in the case of bulk
heterojunction devices is the tortuosity of the morphology discussed
above. In the present case, this is the more likely explanation since the
current density in panel b of Fig. 1 is actually slightly lower than in
panel a, i.e. contact limitations are actually less likely to dominate. In
either case, the conventional mobility models discussed here become
inapplicable and the fitting voltage region of the J-V curve must be
downshifted, assuring it is located before the onset of dominating series
resistance (Fig. 1b).

Our open-source software can automatically exclude regions with a
slope below a user-defined threshold value, typically∼2 for SCLC, from
the fitting. Likewise, regions where the curvature d slope dV( )/ is less
than a user-defined minimum value, 0 in the example of Fig. 1b, can be
excluded automatically. We hope that using automated criteria to de-
termine the fitting range promotes objectivity and comparability be-
tween different labs.

3.2. GDM analysis: Mott-Gurney vs. Murgatroyd-Gill law

Based on the Mott-Gurney law Eq. (14), the current density should
be a strictly quadratic function of the applied voltage, which on a
double log-scale has a slope equal to 2. Fig. 2 shows two examples
where this is not the case.

The Murgatroyd-Gill law Eq. (17) introduces the field-enhancement
factor gamma (γ≥ 0) and allows the slope to be≥ 2. It should be noted
that the two equations are identical for γ=0. Possibly owing to the
simplicity of the model, it is not uncommon to still use Eq. (14) to fit a
small voltage region of the J-V curve where the slope is equal to 2. In
Fig. 2 we inspect the errors that arise when different voltage regions of
temperature-dependent J-V curves are fitted with Eq. (17) (γ=0) and
Eq. (17) (γ > 0), blue and red traces in Fig. 2a, respectively. It is

Fig. 1. a) (top) SCLC data (black squares) measured
at 300 K for a pristine TQ1 hole-only device, showing
a peak in the slope of the double-log J-V curve as a
sign of a trap-filling regime (bottom). The fitting re-
gion (red line) is confined to higher voltages where
the slope is > 2 and the traps are filled. b) (top)
SCLC data (black squares) measured at 300 K for a
binary TQ1:IC60BA 1:1 hole-only device showing
non-negligible series resistance or tortuosity effects
by a decrease in the J-V slope at higher voltages
(bottom Figure). The fitting region (red line) is set at
the voltage region where J-V slope> 2 but before the
onset where the series resistance or tortuosity dom-
inates. (For interpretation of the references to colour
in this figure legend, the reader is referred to the Web
version of this article.)
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evident that the short-range fits, fitted with γ=0, are not re-
presentative of the entire J-V curve. As such, the material is described
inconsistently as different temperatures are analyzed at different field
strengths.

Forcing γ to be 0 for this material system results in an over-
estimation of the extracted mobilities by a factor ∼3–4 as seen in
Fig. 2b. Using the GDM model Eq. (19) to interpret the temperature-
dependent mobilities results in a similar Gaussian energetic disorder
estimate as mobilities at each temperature were almost equally over-
estimated for this specific material system. In principle, significant er-
rors in the extracted energetic disorder should be expected as well, see
e.g. the APFO3:PC61BM 1:4 blend for which the extracted disorders
differ by 83.7 meV vs 90.7meV (Figure S6). Note also that the tem-
perature dependence of γ obeys the empirical relation Eq. (18). In any
case, to avoid errors in extracted mobility values, a common voltage
range should be analyzed.

3.3. Mott-Gurney + GDM vs drift-diffusion + eGDM analysis in
automated mode

A series of ternary TQ1:PC71BM1-x:IC60BAx, (0≤ x≤ 1) hole-only
devices [52], was analyzed using the freeware analysis tool (in auto-
range mode, where the software automatically avoids trap-filling and
series resistance problems described earlier) for both the analytical
Mott-Gurney + GDM model (MG + GDM) and the drift-diffu-
sion + eGDM (DD + eGDM) model.

Charge carrier zero-field mobilities were calculated for DD as a
function of nearest-neighbor distance, temperature, energetic disorder
and hopping frequency according to the Pasveer formalism [23]. The
resulting built-in voltages Vbi (free parameter) did not exceed 0.15 V for
any of the material systems studied in this work (Tables S2,S3,S5, S6 in
the SI), in agreement to what has been observed experimentally, i.e.
none of the devices show significant asymmetry. The resulting zero-
field mobilities plotted together with the Gaussian energetic disorder
estimates for the two models are shown in Fig. 3; the corresponding
SCLC fits are shown in Figure S1 and the fitting parameters are given in
Tables S1, S2, S3.

The extracted zero-field hole mobilities (blue symbols) for the two

models are in excellent agreement within a small error margin
(± 1·10−5 cm2V−1s−1). Maybe more surprisingly, in view of the dif-
ferences in underlying assumptions, complexity and degrees of
freedom, also the extracted Gaussian energetic disorders are in agree-
ment within a margin of∼5meV. In all cases, the mobility and disorder
values fall well in the range of typically encountered values for this type
of materials.

The MG + GDM model reproduces perfectly the experimental J-V
data for all of the measured temperatures (200–300 K) and the ex-
tracted zero-field mobility and γ values follow the empirical 1/T2 and
1/T dependencies, respectively, with reasonable accuracy (SI Figures
S1, S2). On the other hand, the drift-diffusion model can adequately
describe the majority of the J-V curves for all of the measured tem-
peratures (200–300 K) (a reduced temperature range of 240–300 K was
fitted for two material systems, see SI Figures S1d, S2a). At a phe-
nomenological level, this difference reflects the fact that the

Fig. 2. a) (Top) Temperature-dependent SCLC data
for pristine TQ1 hole-only devices (black open sym-
bols) fitted with Eq. (17) using γ≥ 0 (red lines) and
γ=0 (blue lines); (bottom) the slope of the log(J)-log
(V) data, showing that strict slope=2 fitting is prone
to be affected by traps; b) Extracted zero-field mo-
bilities vs 1/T2 for γ≥ 0 (red open squares) and
γ=0 (blue open circles). c) γ values and linear fits
for γ > 0 and γ=0 plotted vs 1/T. (For interpreta-
tion of the references to colour in this figure legend,
the reader is referred to the Web version of this ar-
ticle.)

Fig. 3. Zero-field charge carrier mobilities extracted from SCLC measurements
performed at 300 K (blue traces) and Gaussian energetic disorder (red traces)
extracted using the analytical MG + GDM model (open squares) and the
DD + eGDM model (open triangles) for ternary TQ1:PC71BM1-x:IC60BAx

(0≤ x≤ 1) hole-only devices. (For interpretation of the references to colour in
this figure legend, the reader is referred to the Web version of this article.)
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DD + eGDM model is constrained despite the larger number of para-
meters. At a deeper level, this reflects the fact that the eGDMmodel was
developed for a particular mode of transport – nearest-neighbor hop-
ping on a cubic lattice with rates described by the Miller-Abrahams
expression. It was, however, shown that the mathematical form of
equations (1)–(7) does not significantly change when other (Marcus)
hopping rates or other (fcc) lattices were used [38,60], nor when non-
nearest neighbor hops and realistic, irregular site distributions are ac-
counted for [33]. One might speculate that these models still predict a
too low rate of hops to non-nearest neighbor sites and/or not fully
accounting for an increased delocalization at higher energies
[32,61,62]. In any case, both models predict similar energetic disorder
values and can thus be used interchangeably.

Although not further pursued here, the DD + eGDM model offers
the advantage over the MG + GDM model that it is not constrained to
the system being in space-charge limited conditions, so sub-2 slope J-V
data associated with diffusive transport can be accurately reproduced.
This is shown e.g. for APFO3:PC61BM 1:4 at 300 K in Figure S2 panel g
in the SI.

The major reason for the phenomenological success of the
MG + GDM model is the fact that the field enhancement factor γ, and
especially its temperature-dependence, are not coupled to the disorder
or any other physical parameter. Recall that, within this model, the
energetic disorder is only coupled to (and extracted from) the tem-
perature-dependence of the zero-field mobility. While phenomen-
ologically powerful, such decoupling is unphysical. Despite this, it is an
extremely convenient coincidence that the extracted mobilities and
disorders from this simple analytical model are so close to those ob-
tained with fitting with the more elaborate DD + eGDM model.

The same method as for the TQ1:PC71BM:IC60BA system was fol-
lowed to analyze a series of hole-only devices based on active layers as
typically used in organic photovoltaics. The results are shown for pure
materials and binary bulk heterojunction blends sorted by increasing
fullerene concentration (weight fraction) in Fig. 4. The SCLC fits are
shown in the SI Figure S2, the corresponding parameters in Tables S4,
S5 and S6. Again, the mobility and disorder values fall well in the range
of typically encountered values for this type of materials.

The resulting zero-field mobilities extracted from the J-V curves
using the two models are again in agreement within a small error
margin (± 2·10−5 cm2V−1s−1). Evaluating the results from all the
material systems in this work leads to the conclusion that zero-field
mobility analysis within the two formalisms is in excellent agreement
and therefore can empirically be trusted for both models despite the
fundamental differences in underlying assumptions. However, the

resulting HOMO Gaussian energetic disorders deviate by an increasing
amount with increased fullerene concentration (by weight) in the
blend.

At higher fullerene concentrations the Gaussian energetic disorder
estimates in Fig. 4 are, with one exception, significantly lower for
DD + eGDM than for MG + GDM. The relatively low disorder esti-
mates (below 60 meV) for the HOMO of binary devices extracted from
the DD model are not in agreement with the usual range of HOMO
disorder values reported in literature (70–100 meV) on basis of more
elaborate analysis of multiple experiments and should therefore be
considered as erroneous [16,17,29,63]. We speculate that at increasing
fullerene concentrations the importance of long-range hole tunneling/
hopping through the fullerene phase increases significantly as described
earlier in Ref. [61], but not accounted for in eGDM-type models. Such
long-range (variable range) hopping will suppress the spread of the J-V
curves vs temperature. When analyzed with a model that does not ac-
count for this, the suppressed temperature dependence of the mobility
will translate into an unrealistically low fitted value for the energetic
disorder and should thus be avoided.

In this context it is good to discuss the general problem of parameter
interchangeability when fitting transport models to J-V curves (or any
multi-parameter model fit to experimental data). Within the eGDM, the
hopping rate scales the current density without changing its tempera-
ture dependence while disorder affects both, so for a single temperature
measurement they are essentially indistinguishable and thereby un-
derdetermined: the model might produce good fits, but the corre-
sponding parameters are not unique and should not be used or trusted.
For temperature-dependent measurements as done here, forcing a
higher hopping rate would increase the current density resulting in a
concomitant increase of the fitted energetic disorder to maintain the
experimental current density. However, the induced change of en-
ergetic disorder changes the temperature-dependence and inevitably
reduces the quality of the experimental SCLC data description. Hence,
we cannot enforce full consistency between the DD + eGDM and GMD
fit parameters by constraining the attempt-to-hop rate without the fits
to the experimental data getting significantly worse. Moreover, since
one has no a priori knowledge of permitted fit values in most practical
situations, the hopping rate, energetic disorder and lattice constant
were set as free parameters for all the material systems in this work (see
SI for details). Since our model fits the entire dataset globally, the re-
sulting fits are expected to be far less prone to errors in material
parameter determination.

The fitted hopping rates and energetic disorders vary significantly
among the different material systems while the inter-site distance was
consistently around ∼1.8 nm (arithmetic mean is ∼1.7 nm) as used in
previous work [16,17,29], except for three materials systems (see SI,
Table S6) where the value was ∼1.3 nm (PTB7:PC71BM 1:1.5,
TQ1:PC71BM 1:2.5, APFO3:PC61BM 1:4). The effect of the lattice con-
stant was found to be insignificant, and when a fixed lattice constant of
1.8 nm was enforced for the aforementioned three material systems, the
resulting fits for the hopping rate and the energetic disorder were very
similar without decreasing the quality of the J-V vs T fits. Accurately
extracting a typical inter-site distance from temperature-dependent
SCLC data using the DD + eGDM model generally requires data for
devices of various thicknesses [56,57]. Based on the above and the fact
that a thickness dependence study is not included in this work, we re-
frain from drawing firm conclusions regarding the herein obtained
inter-site distances. Nevertheless, this can be incorporated into a future
software release.

3.4. Mott-Gurney + GDM constrained mode

Our open-source tool offers the option of constrained GDM analysis.
When activated, the field enhancement factor (γ) and zero-field mobi-
lity (μ0) are forced to be strict functions of 1/T and 1/T2, respectively,
according to the Murgatroyd-Gill and GDM equations (17) and (19).

Fig. 4. Charge carrier zero-field mobilities at 300 K (blue traces) and Gaussian
energetic disorder (red traces) extracted using the analytical MG+ GDM model
(open squares) and the DD + eGDM model (open triangles) for pristine, binary
and ternary hole-only devices sorted by increasing fullerene concentration
(weight fraction). (For interpretation of the references to colour in this figure
legend, the reader is referred to the Web version of this article.)
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This mode can help to identify J-V curves that do not follow the
(monotonous) trend as a function of temperature which can help to
identify experimental problems during the measurement procedure. For
the present material systems, constraining μ0 and γ resulted in almost
identical SCLC descriptions, i.e. identical room temperature zero-field
mobilities and disorder estimates, meaning that the experimental data
were sound.

3.5. Drift-diffusion + eGDM, cGDM, ET-GDM

Comparing the results of the DD + eGDM model with cGDM, the
resulting disorders were found to be similar despite the J-V fits being
significantly worse for all material systems when using the cGDM.
Representative examples are shown in the SI (Figure S3). We conclude
that for the material systems studied herein, the energetic disorder does
not show correlations that are compatible with each lattice site con-
taining a random dipole as assumed in the cGDM model. In view of the
absence of significant dipole moments in most conjugated polymers,
this finding is in line with expectations and previous work [64].

The ET-GDM on the other hand can accurately reproduce the tem-
perature-dependent J-V data over the full temperature range and yields
similar disorder estimates as the eGDM; parameters and representative
fits are again given in the SI (Figure S3, Table S7). Interestingly, for
virtually all material systems, the fitted lattice constant and localization
length are around ≈aNN 1.4 nm and ≈α 0.25 nm. Hence ≈a α/NN 5–6
instead of 10 as assumed by Pasveer et al. and Bouhassoune et al. when
developing the parametrization equations (1) and (8). This suggests
that, from a practical perspective, varying α indeed predominantly
changes the prefactor of the mobility as stated in Ref. [23]. Forcing α
=0, i.e. removing the explicit field dependence and reverting the ET-
GDM to the bare Cottaar/Nenashev model Eq. (10), leads to poor fits to
the J-V curves and thereby to the conclusion that not only the density
dependence of the mobility must be accounted for when analyzing
SCLC, as was previously argued [55], but also – especially – its field
dependence. We should finally remark that even in this α =0 case the
obtained energetic disorders are quite similar to those obtained from
the complete model.

3.6. Arrhenius analysis

In earlier work a universal Arrhenius (1/T) behavior of the zero-
field mobility according to equation (17) was found for a series of
pristine organic semiconductors, suggesting the existence of a common
infinite temperature zero-field mobility [21]. The existence of such a

universal mobility would be very important as a single mobility mea-
surement at finite temperature would suffice to characterize the full
temperature dependence. The same procedure was followed here for
the series of materials systems discussed above.

As a first approach the mobilities extracted from the Murgatroyd-
Gill equation (17) were described by equation (20) using Δ and μ∗ as
free parameters. The resulting fits are plotted in Fig. 5a in analogy to
Ref. [21], where a strong variation of μ∗ for the different materials is
observed (Figure S4a). When the corresponding Δ values are plotted
against μ0 at 300 K as in Ref. [21], see Fig. 5b, a modest correlation is
observed, with only about half of the total 13 material systems lying
reasonably close to the straight dashed line. Following the method of
Ref. [21] and setting a constant ‘universal’ μ∗=10 cm2 V−1s−1 for all
material systems gives acceptable fits for most of the material systems
(9 out of 13), see Figure S3. Although the log-scaling of the plot does
not allow detailed evaluation of the fit quality (Figure S3a), 4 material
systems still show some deviation (Figure S5), but less than in Fig. 5b.
The correlation between Δ and μ0 at 300 K evidently becomes stronger
when μ∗ is forced to a single value (Figure S3b). The selected universal
μ∗ is the arithmetic mean of the free μ∗ of all the material systems
μ∗=10 cm2 V−1s−1; taking the logarithmic mean does not affect the
aforementioned results/conclusions.

While the data in Fig. 5 cast doubt on the validity of a strict uni-
versal Arrhenius relation between zero-field mobility and temperature
as proposed in Ref. [21], the findings are in good qualitative agreement
with the numerical results of Ref. [32] We should, however, point out
that in the present work most materials systems are binary and ternary
blends while in Refs. [21,32] only pristine materials were studied. Our
pristine materials TQ1 and PCDTBT fit the dependence proposed in Ref.
[21].

A similar explanation could justify the fact that the universal μ∗ is a
factor 3 smaller than the one used in Ref. [21]. The above notwith-
standing, the present experimental results do not allow to univocally
point out one interpretational scheme (eGDM or Arrhenius) as superior
to the other. In that perspective, it would be extremely interesting to
perform layer thickness dependent studies and seek to interpret those in
the Arrhenius formalism, as previously done for the DD + eGDM fra-
mework – this might for example reveal to which degree a charge
carrier density dependence of the mobility, that so far has been ignored
in the Arrhenius formalism, must be accounted for.

4. Conclusion

In this work we have reviewed different equilibrium models used to

Fig. 5. a) Zero-field mobilities for hole-only pristine, binary and ternary material systems fitted with equation (17) with μ∗ and Δ set as free parameters. The plot is
scaled as in Ref. [21] showing the resulting μ∗ at infinite temperature. b) Resulting Δ values versus zero-field mobility at 300 K for all material systems. The dashed
line is a guide to the eye. Solid symbols and dashed lines indicate material systems that show strong correlation between μ0 300K and Δ when μ∗ is a free parameter;
open symbols and solid lines indicate the material systems that do not follow the correlation trend.

N. Felekidis et al. Organic Electronics 61 (2018) 318–328

325



extract mobilities from temperature-dependent SCLC experiments of
pristine, binary and ternary hole-only devices. The Murgatroyd-Gill
formalism was used to extract zero-field mobilities and was combined
with the Gaussian Disorder Model in order to extract estimates of the
energetic disorder. The model is also applicable to n-type materials. The
above analytical model was compared to a more elaborate drift-diffu-
sion model with parametrized mobilities according to various exten-
sions of the Gaussian Disorder Model. Provided uncorrelated disorder is
assumed, the resulting zero-field mobilities extracted with the different
formalisms are in excellent agreement for all material systems while the
estimated energetic disorders coincide only for those with low-fullerene
concentration. The increasing deviation with increasing acceptor ratio
could be attributed to the increased delocalization of the charge carriers
over multiple sites while the aforementioned models are based on as-
sumptions of nearest-neighbor hopping.

We further analyze the hole-only data assuming Arrhenius type
behavior of the zero-field mobility. In previous works these were ar-
gued to follow a universal law for pristine materials. For most systems
this scheme leads to an accurate description as well and we speculate
that the reason for the deviation in some systems is that they are
binary/ternary blends and not pure materials.

Identification of traps and series resistance is done by inspecting the
slope of the log(J)-log(V) data; traps will result in a distinct peak while
series resistance results in a monotonous decreasing slope at high vol-
tages. Proper analysis of the SCLC data requires selecting an appro-
priate fitting voltage range which does not exhibit either of the two
issues. Constraining the analysis window to the voltage where the log
(J)-log(V) slope is equal to 2 results in mobilities and energetic disorder
estimates that may differ considerably from the correct values. All of
the aforementioned analysis models are incorporated in an automated
open-source analysis tool available for download and free to use.
Among other features the software provides a graphical user interface
and an automated tracking of the proper voltage fitting range which
reduces errors coming from user input and further increases the ro-
bustness of the analysis method while minimizing the processing time.
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Supplementary data related to this article can be found at http://dx.doi.org/10.1016/j.orgel.2018.06.010.

Appendix B

For completeness, we here supply the complete parametrization of the mobility functional for the correlated Gaussian disorder model as de-
veloped by Bouhassoune et al. [24].
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We use =c 12 , i.e. = − a αc exp( 2 / )NN2 in the work by Bouhassoune. Note also that the term paNN
3 equals the relative charge carrier concentration.

N. Felekidis et al. Organic Electronics 61 (2018) 318–328

326

http://dx.doi.org/10.1016/j.orgel.2018.06.010


References

[1] W. Zhao, D. Qian, S. Zhang, S. Li, O. Inganäs, F. Gao, J. Hou, Fullerene-free polymer
solar cells with over 11% efficiency and excellent thermal stability, Adv. Mater. 28
(2016) 4734–4739, http://dx.doi.org/10.1002/adma.201600281.

[2] P.W.M. Blom, M.J.M. de Jong, C.T.H.F. Liedenbaum, Device physics of polymer
light-emitting diodes, Polym. Adv. Technol. 9 (1998) 390–401, http://dx.doi.org/
10.1002/(SICI)1099-1581(199807)9:7<390::AID-PAT795>3.0.CO;2–9.

[3] D. Bharti, I. Varun, S.P. Tiwari, Performance enhancement in TIPS-pentacene:PS
blend organic field effect transistors by solvent vapor annealing, 2016 74th Annu.
Device Res. Conf. DRC, IEEE, 2016, pp. 1–2 , http://dx.doi.org/10.1109/DRC.2016.
7548437.

[4] S. Tang, L. Edman, Light-emitting electrochemical cells: a review on recent pro-
gress, Top. Curr. Chem. 374 (2016) 40, http://dx.doi.org/10.1007/s41061-016-
0040-4.

[5] M. Kuik, G.-J.A.H. Wetzelaer, H.T. Nicolai, N.I. Craciun, D.M. De Leeuw,
P.W.M. Blom, 25th anniversary article: charge transport and recombination in
polymer light-emitting diodes, Adv. Mater. 26 (2014) 512–531, http://dx.doi.org/
10.1002/adma.201303393.

[6] C. Tanase, E.J. Meijer, P.W.M. Blom, D.M. De Leeuw, Unification of the hole
transport in polymeric field-effect transistors and light-emitting diodes, Phys. Rev.
Lett.. doi:10.1103/PhysRevLett.91.216601.

[7] P.N. Murgatroyd, Theory of space-charge-limited current enhanced by Frenkel ef-
fect, J. Phys. Appl. Phys. 3 (1970), http://dx.doi.org/10.1088/0022-3727/3/2/308
308.

[8] J. Lorrmann, M. Ruf, D. Vocke, V. Dyakonov, C. Deibel, Distribution of charge
Carrier transport properties in organic semiconductors with Gaussian disorder, J.
Appl. Phys. (2012), http://dx.doi.org/10.1063/1.4875683.

[9] M. Mesta, C. Schaefer, J. de Groot, J. Cottaar, R. Coehoorn, P.A. Bobbert, Charge-
Carrier relaxation in disordered organic semiconductors studied by dark injection:
experiment and modeling, Phys. Rev. B 88 (2013) 174204, http://dx.doi.org/10.
1103/PhysRevB.88.174204.

[10] G. Juška, K. Arlauskas, M. Viliūnas, J. Kočka, Extraction current transients: new
method of study of charge transport in microcrystalline silicon, Phys. Rev. Lett. 84
(2000) 4946–4949, http://dx.doi.org/10.1103/PhysRevLett.84.4946.

[11] A.J. Mozer, G. Dennler, N.S. Sariciftci, M. Westerling, A. Pivrikas, R. Österbacka,
G. Juška, Time-dependent mobility and recombination of the photoinduced charge
carriers in conjugated polymer/fullerene bulk heterojunction solar cells, Phys. Rev.
B 72 (2005) 035217, http://dx.doi.org/10.1103/PhysRevB.72.035217.

[12] T.J. Savenije, A.J. Ferguson, N. Kopidakis, G. Rumbles, Revealing the dynamics of
charge carriers in polymer:fullerene blends using photoinduced time-resolved
Microwave conductivity, J. Phys. Chem. C 117 (2013) 24085–24103, http://dx.doi.
org/10.1021/jp406706u.

[13] C.S. Ponseca, H. Němec, N. Vukmirović, S. Fusco, E. Wang, M.R. Andersson,
P. Chabera, A. Yartsev, V. Sundström, Electron and Hole Contributions to the
Terahertz photoconductivity of a conjugated polymer:fullerene blend identified, J.
Phys. Chem. Lett. 3 (2012) 2442–2446, http://dx.doi.org/10.1021/jz301013u.

[14] J. Cabanillas-Gonzalez, T. Virgili, A. Gambetta, G. Lanzani, T.D. Anthopoulos,
D.M. de Leeuw, Photoinduced transient Stark spectroscopy in organic semi-
conductors: a method for charge mobility determination in the picosecond regime,
Phys. Rev. Lett. 96 (2006) 106601, http://dx.doi.org/10.1103/PhysRevLett.96.
106601.

[15] A. Devižis, K. Meerholz, D. Hertel, V. Gulbinas, Hierarchical charge Carrier motion
in conjugated polymers, Chem. Phys. Lett. 498 (2010) 302–306, http://dx.doi.org/
10.1016/j.cplett.2010.08.071.

[16] A. Melianas, V. Pranculis, A. Devižis, V. Gulbinas, O. Inganäs, M. Kemerink,
Dispersion-dominated photocurrent in polymer:fullerene solar cells, Adv. Funct.
Mater. 24 (2014) 4507–4514, http://dx.doi.org/10.1002/adfm.201400404.

[17] A. Melianas, V. Pranculis, Y. Xia, N. Felekidis, O. Inganäs, V. Gulbinas,
M. Kemerink, Photogenerated Carrier mobility significantly exceeds injected
Carrier mobility in organic solar cells, Adv. Energy Mater (2017) 1602143, http://
dx.doi.org/10.1002/aenm.201602143.

[18] M.A. Lampert, R.B. Schilling, Current injection in solids: the regional approximation
method, semicond. Semimet. (n.d.). http://download.xuebalib.com/xuebalib.com.
17303.pdf.

[19] P.W.M. Blom, M.C.J.M. Vissenberg, Charge transport in poly(p-phenylene vinylene)
light-emitting diodes, Mater. Sci. Eng. R Rep.. doi:10.1016/S0927–796X(00)
00009-7.

[20] W.D. Gill, Drift mobilities in amorphous charge-transfer complexes of trinitro-
fluorenone and poly-n-vinylcarbazole, J. Appl. Phys. 43 (1972) 5033–5040, http://
dx.doi.org/10.1063/1.1661065.

[21] N.I. Craciun, J. Wildeman, P.W.M. Blom, Universal Arrhenius temperature acti-
vated charge transport in diodes from disordered organic semiconductors, Phys.
Rev. Lett. 100 (2008) 056601, http://dx.doi.org/10.1103/PhysRevLett.100.
056601.

[22] H. Bässler, Charge transport in disordered organic photoconductors a Monte Carlo
simulation study, Phys. Status Solidi B 175 (1993) 15–56, http://dx.doi.org/10.
1002/pssb.2221750102.

[23] W.F. Pasveer, J. Cottaar, C. Tanase, R. Coehoorn, P.A. Bobbert, P.W.M. Blom, D.M.
De Leeuw, M.A.J. Michels, Unified description of Charge-Carrier mobilities in dis-
ordered semiconducting polymers, Phys. Rev. Lett.. doi:10.1103/PhysRevLett.94.
206601.

[24] M. Bouhassoune, S.L.M. van Mensfoort, P.A. Bobbert, R. Coehoorn, Carrier-density
and field-dependent charge-Carrier mobility in organic semiconductors with cor-
related Gaussian disorder, Org. Electron. 10 (2009) 437–445, http://dx.doi.org/10.

1016/J.ORGEL.2009.01.005.
[25] J.O. Oelerich, A.V. Nenashev, A.V. Dvurechenskii, F. Gebhard, S.D. Baranovskii,

Field dependence of hopping mobility: lattice models against spatial disorder, Phys.
Rev. B 96 (1952), http://dx.doi.org/10.1103/PhysRevB.96.195208.

[26] A.V. Nenashev, J.O. Oelerich, A.V. Dvurechenskii, F. Gebhard, S.D. Baranovskii,
Fundamental characteristic length scale for the field dependence of hopping charge
transport in disordered organic semiconductors, Phys. Rev. B 96 (2017), http://dx.
doi.org/10.1103/PhysRevB.96.035204.

[27] R. Volpi, S. Stafström, M. Linares, Transition fields in organic materials: from
percolation to inverted Marcus regime. A consistent Monte Carlo simulation in
disordered PPV, J. Chem. Phys. 142 (2015) 094503, http://dx.doi.org/10.1063/1.
4913733.

[28] J. Noolandi, Equivalence of multiple-trapping model and time-dependent random
walk, Phys. Rev. B 16 (1977) 4474–4479, http://dx.doi.org/10.1103/PhysRevB.16.
4474.

[29] N. Felekidis, A. Melianas, M. Kemerink, Nonequilibrium drift-diffusion model for
organic semiconductor devices, Phys. Rev. B 94 (2016) 035205, http://dx.doi.org/
10.1103/PhysRevB.94.035205.

[30] R.C.I. MacKenzie, A. Göritz, S. Greedy, E. von Hauff, J. Nelson, Theory of Stark
spectroscopy transients from thin film organic semiconducting devices, Phys. Rev. B
89 (2014) 195307, http://dx.doi.org/10.1103/PhysRevB.89.195307.

[31] H. Mäckel, R.C.I. MacKenzie, Determination of Charge-Carrier mobility in dis-
ordered thin-film solar cells as a function of current density, Phys. Rev. Appl. 9
(2018) 034020, http://dx.doi.org/10.1103/PhysRevApplied.9.034020.

[32] R.P. Fornari, P.W.M. Blom, A. Troisi, How many parameters actually affect the
mobility of conjugated polymers? Phys. Rev. Lett. 118 (2017) 086601, http://dx.
doi.org/10.1103/PhysRevLett.118.086601.

[33] A. Massé, P. Friederich, F. Symalla, F. Liu, V. Meded, R. Coehoorn, W. Wenzel,
P.A. Bobbert, Effects of energy correlations and superexchange on charge transport
and exciton formation in amorphous molecular semiconductors: an ab initio study,
Phys. Rev. B 95 (2017) 115204, http://dx.doi.org/10.1103/PhysRevB.95.115204.

[34] F. Symalla, P. Friederich, A. Massé, V. Meded, R. Coehoorn, P. Bobbert, W. Wenzel,
Charge transport by superexchange in molecular host-guest systems, Phys. Rev.
Lett. 117 (2016) 276803, http://dx.doi.org/10.1103/PhysRevLett.117.276803.

[35] L. Sousa, R. Volpi, D.A. da Silva Filho, M. Linares, Mobility field and mobility
temperature dependence in PC61BM: a kinetic Monte-Carlo study, Chem. Phys.
Lett. 689 (2017) 74–81, http://dx.doi.org/10.1016/J.CPLETT.2017.10.011.

[36] J.C. Blakesley, H.S. Clubb, N.C. Greenham, Temperature-dependent electron and
hole transport in disordered semiconducting polymers: analysis of energetic dis-
order, Phys. Rev. B. doi:10.1103/PhysRevB.81.045210.

[37] J.C. Blakesley, F.A. Castro, W. Kylberg, G.F.A. Dibb, C. Arantes, R. Valaski,
M. Cremona, J.S. Kim, J.-S. Kim, Towards reliable charge-mobility benchmark
measurements for organic semiconductors, Org. Electron. 15 (2014) 1263–1272,
http://dx.doi.org/10.1016/J.ORGEL.2014.02.008.

[38] J. Cottaar, L.J.A. Koster, R. Coehoorn, P.A. Bobbert, Scaling theory for percolative
charge transport in disordered molecular semiconductors, Phys. Rev. Lett. 107
(2011) 136601, http://dx.doi.org/10.1103/PhysRevLett.107.136601.

[39] Y.N. Gartstein, E.M. Conwell, High-field hopping mobility in molecular systems
with spatially correlated energetic disorder, Chem. Phys. Lett. 245 (1995) 351–358,
http://dx.doi.org/10.1016/0009-2614(95)01031-4.

[40] D.H. Dunlap, P.E. Parris, V.M. Kenkre, Charge-dipole model for the universal field
dependence of mobilities in molecularly doped polymers, Phys. Rev. Lett. 77 (1996)
542–545, http://dx.doi.org/10.1103/PhysRevLett.77.542.

[41] S.V. Novikov, D.H. Dunlap, V.M. Kenkre, P.E. Parris, A.V. Vannikov, Essential role
of correlations in governing charge transport in disordered organic materials, Phys.
Rev. Lett. 81 (1998) 4472–4475, http://dx.doi.org/10.1103/PhysRevLett.81.4472.

[42] P. Kumar, V. Rani, al, A.V. Nenashev, J.O. Oelerich, S.D. Baranovskii, Theoretical
tools for the description of charge transport in disordered organic semiconductors,
J. Phys. Condens. Matter 27 (2015) 093201, http://dx.doi.org/10.1088/0953-
8984/27/9/093201.

[43] S. Marianer, B.I. Shklovskii, Effective temperature of hopping electrons in a strong
electric field, Phys. Rev. B 46 (1992), https://journals.aps.org/prb/pdf/10.1103/
PhysRevB.46.13100.

[44] A.V. Nenashev, F. Jansson, J.O. Oelerich, D. Huemmer, A.V. Dvurechenskii,
F. Gebhard, S.D. Baranovskii, Advanced percolation solution for hopping con-
ductivity, Phys. Rev. B 87 (2013) 235204, http://dx.doi.org/10.1103/PhysRevB.
87.235204.

[45] P. Kordt, J.J.M. van der Holst, M. Al Helwi, W. Kowalsky, F. May, A. Badinski,
C. Lennartz, D. Andrienko, Modeling of organic light emitting diodes: from mole-
cular to device properties, Adv. Funct. Mater. 25 (2015) 1955–1971, http://dx.doi.
org/10.1002/adfm.201403004.

[46] R. Volpi, S. Kottravel, M.S. Nørby, S. Stafström, M. Linares, Effect of polarization on
the mobility of C60: a kinetic Monte Carlo study, J. Chem. Theor. Comput. 12
(2016) 812–824, http://dx.doi.org/10.1021/acs.jctc.5b00975.

[47] Y. Roichman, N. Tessler, Generalized Einstein relation for disordered semi-
conductors—implications for device performance, Appl. Phys. Lett. 80 (2002)
1948–1950, http://dx.doi.org/10.1063/1.1461419.

[48] G.A.H. Wetzelaer, L.J.A. Koster, P.W.M. Blom, Validity of the Einstein relation in
disordered organic semiconductors, Phys. Rev. Lett. 107 (2011) 066605, http://dx.
doi.org/10.1103/PhysRevLett.107.066605.

[49] P.A. Leighton, Electronic processes in ionic crystals (Mott, N. F.; Gurney, R. W.), J.
Chem. Educ. 18 (1941) 249, http://dx.doi.org/10.1021/ed018p249.1.

[50] D.L. Scharfetter, H.K. Gummel, Large-signal analysis of a silicon Read diode oscil-
lator, IEEE Trans. Electron. Dev. 16 (1969) 64–77, http://dx.doi.org/10.1109/T-
ED.1969.16566.

[51] G. Zuo, Z. Li, O. Andersson, H. Abdalla, E. Wang, M. Kemerink, Molecular doping

N. Felekidis et al. Organic Electronics 61 (2018) 318–328

327

http://dx.doi.org/10.1002/adma.201600281
http://dx.doi.org/10.1002/(SICI)1099-1581(199807)9:7<390::AID-PAT795>3.0.CO;2�9
http://dx.doi.org/10.1002/(SICI)1099-1581(199807)9:7<390::AID-PAT795>3.0.CO;2�9
http://dx.doi.org/10.1109/DRC.2016.7548437
http://dx.doi.org/10.1109/DRC.2016.7548437
http://dx.doi.org/10.1007/s41061-016-0040-4
http://dx.doi.org/10.1007/s41061-016-0040-4
http://dx.doi.org/10.1002/adma.201303393
http://dx.doi.org/10.1002/adma.201303393
http://dx.doi.org/10.1088/0022-3727/3/2/308
http://dx.doi.org/10.1088/0022-3727/3/2/308
http://dx.doi.org/10.1063/1.4875683
http://dx.doi.org/10.1103/PhysRevB.88.174204
http://dx.doi.org/10.1103/PhysRevB.88.174204
http://dx.doi.org/10.1103/PhysRevLett.84.4946
http://dx.doi.org/10.1103/PhysRevB.72.035217
http://dx.doi.org/10.1021/jp406706u
http://dx.doi.org/10.1021/jp406706u
http://dx.doi.org/10.1021/jz301013u
http://dx.doi.org/10.1103/PhysRevLett.96.106601
http://dx.doi.org/10.1103/PhysRevLett.96.106601
http://dx.doi.org/10.1016/j.cplett.2010.08.071
http://dx.doi.org/10.1016/j.cplett.2010.08.071
http://dx.doi.org/10.1002/adfm.201400404
http://dx.doi.org/10.1002/aenm.201602143
http://dx.doi.org/10.1002/aenm.201602143
http://download.xuebalib.com/xuebalib.com.17303.pdf
http://download.xuebalib.com/xuebalib.com.17303.pdf
http://dx.doi.org/10.1063/1.1661065
http://dx.doi.org/10.1063/1.1661065
http://dx.doi.org/10.1103/PhysRevLett.100.056601
http://dx.doi.org/10.1103/PhysRevLett.100.056601
http://dx.doi.org/10.1002/pssb.2221750102
http://dx.doi.org/10.1002/pssb.2221750102
http://dx.doi.org/10.1016/J.ORGEL.2009.01.005
http://dx.doi.org/10.1016/J.ORGEL.2009.01.005
http://dx.doi.org/10.1103/PhysRevB.96.195208
http://dx.doi.org/10.1103/PhysRevB.96.035204
http://dx.doi.org/10.1103/PhysRevB.96.035204
http://dx.doi.org/10.1063/1.4913733
http://dx.doi.org/10.1063/1.4913733
http://dx.doi.org/10.1103/PhysRevB.16.4474
http://dx.doi.org/10.1103/PhysRevB.16.4474
http://dx.doi.org/10.1103/PhysRevB.94.035205
http://dx.doi.org/10.1103/PhysRevB.94.035205
http://dx.doi.org/10.1103/PhysRevB.89.195307
http://dx.doi.org/10.1103/PhysRevApplied.9.034020
http://dx.doi.org/10.1103/PhysRevLett.118.086601
http://dx.doi.org/10.1103/PhysRevLett.118.086601
http://dx.doi.org/10.1103/PhysRevB.95.115204
http://dx.doi.org/10.1103/PhysRevLett.117.276803
http://dx.doi.org/10.1016/J.CPLETT.2017.10.011
http://dx.doi.org/10.1016/J.ORGEL.2014.02.008
http://dx.doi.org/10.1103/PhysRevLett.107.136601
http://dx.doi.org/10.1016/0009-2614(95)01031-4
http://dx.doi.org/10.1103/PhysRevLett.77.542
http://dx.doi.org/10.1103/PhysRevLett.81.4472
http://dx.doi.org/10.1088/0953-8984/27/9/093201
http://dx.doi.org/10.1088/0953-8984/27/9/093201
https://journals.aps.org/prb/pdf/10.1103/PhysRevB.46.13100
https://journals.aps.org/prb/pdf/10.1103/PhysRevB.46.13100
http://dx.doi.org/10.1103/PhysRevB.87.235204
http://dx.doi.org/10.1103/PhysRevB.87.235204
http://dx.doi.org/10.1002/adfm.201403004
http://dx.doi.org/10.1002/adfm.201403004
http://dx.doi.org/10.1021/acs.jctc.5b00975
http://dx.doi.org/10.1063/1.1461419
http://dx.doi.org/10.1103/PhysRevLett.107.066605
http://dx.doi.org/10.1103/PhysRevLett.107.066605
http://dx.doi.org/10.1021/ed018p249.1
http://dx.doi.org/10.1109/T-ED.1969.16566
http://dx.doi.org/10.1109/T-ED.1969.16566


and trap filling in organic semiconductor host–guest systems, J. Phys. Chem. C
(2017), http://dx.doi.org/10.1021/acs.jpcc.7b01758 acs.jpcc.7b01758.

[52] N. Felekidis, A. Melianas, M. Kemerink, Design rule for improved open-circuit
voltage in binary and ternary organic solar cells, ACS Appl. Mater. Interfaces 9
(2017), http://dx.doi.org/10.1021/acsami.7b08276.

[53] M.C. Heiber, K. Kister, A. Baumann, V. Dyakonov, C. Deibel, T.-Q. Nguyen, Impact
of tortuosity on Charge-Carrier transport in organic bulk heterojunction blends,
Phys. Rev. Appl. 8 (2017) 054043, http://dx.doi.org/10.1103/PhysRevApplied.8.
054043.

[54] L.J.A. Koster, Charge Carrier mobility in disordered organic blends for photo-
voltaics, Phys. Rev. B 81 (2010) 205318, http://dx.doi.org/10.1103/PhysRevB.81.
205318.

[55] P.W.M. Blom, C. Tanase, D.M. de Leeuw, R. Coehoorn, Thickness scaling of the
space-charge-limited current in poly(p-phenylene vinylene), Appl. Phys. Lett. 86
(2005) 092105, http://dx.doi.org/10.1063/1.1868865.

[56] S.L.M. van Mensfoort, R. Coehoorn, Effect of Gaussian disorder on the voltage de-
pendence of the current density in sandwich-type devices based on organic semi-
conductors, Phys. Rev. B 78 (2008) 085207, http://dx.doi.org/10.1103/PhysRevB.
78.085207.

[57] S.L.M. van Mensfoort, S.I.E. Vulto, R.A.J. Janssen, R. Coehoorn, Hole transport in
polyfluorene-based sandwich-type devices: quantitative analysis of the role of en-
ergetic disorder, Phys. Rev. B 78 (2008) 085208, http://dx.doi.org/10.1103/
PhysRevB.78.085208.

[58] M. Kemerink, FitSCLC, (2018) https://github.com/mkemerink/FitSCLC.

[59] E. Wang, J. Bergqvist, K. Vandewal, Z. Ma, L. Hou, A. Lundin, S. Himmelberger,
A. Salleo, C. Müller, O. Inganäs, F. Zhang, M.R. Andersson, Conformational disorder
enhances solubility and photovoltaic performance of a thiophene-quinoxaline co-
polymer, Adv. Energy Mater 3 (2013) 806–814, http://dx.doi.org/10.1002/aenm.
201201019.

[60] J. Cottaar, R. Coehoorn, P.A. Bobbert, Scaling theory for percolative charge trans-
port in molecular semiconductors: correlated versus uncorrelated energetic dis-
order, Phys. Rev. B 85 (2012) 245205, http://dx.doi.org/10.1103/PhysRevB.85.
245205.

[61] A. Melianas, V. Pranculis, D. Spoltore, J. Benduhn, O. Inganäs, V. Gulbinas,
K. Vandewal, M. Kemerink, Charge transport in pure and mixed phases in organic
solar cells, Adv. Energy Mater (2017) 1700888, http://dx.doi.org/10.1002/aenm.
201700888.

[62] H. Abdalla, G. Zuo, M. Kemerink, Range and energetics of charge hopping in or-
ganic semiconductors, Phys. Rev. B 96 (2017) 241202, http://dx.doi.org/10.1103/
PhysRevB.96.241202.

[63] H. van Eersel, R.A.J. Janssen, M. Kemerink, Mechanism for efficient photoinduced
charge separation at disordered organic heterointerfaces, Adv. Funct. Mater. 22
(2012) 2700–2708, http://dx.doi.org/10.1002/adfm.201200249.

[64] R.J. de Vries, S.L.M. van Mensfoort, V. Shabro, S.I.E. Vulto, R.A.J. Janssen,
R. Coehoorn, Analysis of hole transport in a polyfluorene-based copolymer— evi-
dence for the absence of correlated disorder, Appl. Phys. Lett. 94 (2009) 163307,
http://dx.doi.org/10.1063/1.3119317.

N. Felekidis et al. Organic Electronics 61 (2018) 318–328

328

http://dx.doi.org/10.1021/acs.jpcc.7b01758
http://dx.doi.org/10.1021/acsami.7b08276
http://dx.doi.org/10.1103/PhysRevApplied.8.054043
http://dx.doi.org/10.1103/PhysRevApplied.8.054043
http://dx.doi.org/10.1103/PhysRevB.81.205318
http://dx.doi.org/10.1103/PhysRevB.81.205318
http://dx.doi.org/10.1063/1.1868865
http://dx.doi.org/10.1103/PhysRevB.78.085207
http://dx.doi.org/10.1103/PhysRevB.78.085207
http://dx.doi.org/10.1103/PhysRevB.78.085208
http://dx.doi.org/10.1103/PhysRevB.78.085208
https://github.com/mkemerink/FitSCLC
http://dx.doi.org/10.1002/aenm.201201019
http://dx.doi.org/10.1002/aenm.201201019
http://dx.doi.org/10.1103/PhysRevB.85.245205
http://dx.doi.org/10.1103/PhysRevB.85.245205
http://dx.doi.org/10.1002/aenm.201700888
http://dx.doi.org/10.1002/aenm.201700888
http://dx.doi.org/10.1103/PhysRevB.96.241202
http://dx.doi.org/10.1103/PhysRevB.96.241202
http://dx.doi.org/10.1002/adfm.201200249
http://dx.doi.org/10.1063/1.3119317

	Automated open-source software for charge transport analysis in single-carrier organic semiconductor diodes
	Introduction
	Theoretical background
	Parametrized mobility functionals
	One-dimensional drift-diffusion model
	Analytical models

	Experimental
	SCLC device fabrication

	Results &#x200B;&&#x200B; discussion
	Identifying traps and series resistance
	GDM analysis: Mott-Gurney vs. Murgatroyd-Gill law
	Mott-Gurney + GDM vs drift-diffusion + eGDM analysis in automated mode
	Mott-Gurney + GDM constrained mode
	Drift-diffusion + eGDM, cGDM, ET-GDM
	Arrhenius analysis

	Conclusion
	Acknowledgements
	Supplementary data
	mk:H1_18
	References




